Comparison of Multiblock Grid & Domain Decomposition in Coastal Ocean Circulation Modeling

Phu V. Luong
EQM ERDC MSRC
University of Texas, Austin

Clay P. Breshears

KAI Software

A Division of Intel Americas, Inc

Le N. Ly
Department of Oceanography
Naval Postgraduate School, Monterey

Outline

- Problems:
 - Poor resolution, less accuracy
 - Not sufficient for planning military operation
 - Large memory and processing requirements
- Solutions:
 - Nesting Techniques
 - Domain Decomposition
 - Multiblock Grid
- Comparison:
 - U.S West Coast Domain Decomposition
 - U.S West Coast Multiblock Grid

Arabian Gulf

- 61,401 (total)
- 39,092 (unused)
- 22,309 (used)
- 36% of total

Nesting Technique:

- Use fine grid within area of concern (nested grid)
- Use coarse grid elsewhere (hosted grid)

Adriatic Sea Nesting

Arabian Gulf Nesting

Domain Decomposition:

- Breaks grid and initial data into sub-blocks
- Complicated preprocessing step
- Indices bookkeeping
- Work distribution
- Severe load imbalance
- Interface communication (only one)

Baltic Sea

Arabian Gulf

Multiblock Grid:

- Generate sub-block grid
- Generate initial data for each sub-block
- Grid blocks can better cover complex coastlines
- Easily handle high resolution areas of interest
- Interface communication (more than one)

Arabian Gulf

- 32,031 (total)
- 9722 (unused)
- 23X MPI-Only
- 57X MPI-OpenMP

Arabian Gulf

- 44,920 (total)
- 6220 (unused)
- 61X MPI-OpenMP

NGLI DOMAIN

NGLI MULTIBLOCK GRID

Multiblock Curvilinear Grid

Multiblock Curvilinear Grid

Multiblock Curvilinear Grid

U.S. West Coast Study

- Multiblock Grid Princeton Ocean Model (MGPOM)
- Four-minute resolution bathymetry data (DBDBV)
- Ten-minute resolution temperature & salinity (GDEM)
- 29-block domain decomposition grid (29DDG)
- 29-block multiblock grid (29MBG)
- Comparison:
 - Work load distribution
 - Parallel performance

U.S. West Coast

- 286x286
- 81,796 (total)
- 56,147 (used)
- 25,650 (unused)

U.S. West Coast

- 29DDG
- 11,015 (unused)

- 29MBG
- 4,007 (unused)

U.S. West Coast

PROFQ (MPI-Only) Cumulative Time for (in seconds)

29DDG (10 days simulation)

29MBG (10 days simulation)

PROFQ (MPI-Pthreads) Cumulative Time (in seconds)

29DDG (10 days simulation)

29MBG (10 days simulation)

Performance Comparison

Grid Used	Implementation Method	PROFQ idle Overhead	Total Execution Time (Seconds)	Parallel Speedup	Maximum PEs Used
29DDG	MPI-Only	13	2622	26X	29
	MPI-Pthreads	7	1720	39X	58
29MBG	MPI-Only	8	2018	33X	29
	MPI-Pthreads	4	1625	41X	58

Wallclock execution time (in minutes)

Conclusions

Numerical results are identical

• MPI-Only : 25X, 33X speedup (29 processors)

• MPI-Pthreads : 38X, 41X speedup (2PE/node)

Future Work

